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XRoboToolkit: A Cross-Platform Framework for Robot Teleoperation
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Abstract—The rapid advancement of Vision-Language-
Action models has created an urgent need for large-scale, high-
quality robot demonstration datasets. Although teleoperation is
the predominant method for data collection, current approaches
suffer from limited scalability, complex setup procedures, and
suboptimal data quality. This paper presents XRoboToolkim
a cross-platform framework for extended reality based robot
teleoperation built on the OpenXR standard. The system
features low-latency stereoscopic visual feedback, optimization-
based inverse Kinematics, and support for diverse tracking
modalities including head, controller, hand, and auxiliary mo-
tion trackers. XRoboToolkit’s modular architecture enables
seamless integration across robotic platforms and simulation
environments, spanning precision manipulators, mobile robots,
and dexterous hands. We demonstrate the framework’s effec-
tiveness through precision manipulation tasks and validate data
quality by training VLLA models that exhibit robust autonomous
performance.

I. INTRODUCTION

Recent advances in deep generative robot learning [1],
especially Vision-Language-Action Models (VLAs) [2]-
[5], are critically dependent on large-scale, high-quality
datasets containing robot skill demonstrations. Robot tele-
operation [6]-[10] is one of the primary approaches for
generating human demonstrations of complex manipulation
and mobility tasks, leveraging human operators’ natural
ability to generalize across diverse environments and tasks.

Recent robot teleoperation frameworks follow several
paradigms, each with distinct trade-offs. Leader-follower
approaches [11] offer low latency and intuitive operation but
require custom hardware tailored to specific robot platforms,
limiting scalability and accessibility. Vision-based teleoper-
ation systems [12] provide greater flexibility and generaliz-
ability across diverse robotic hardware but often suffer from
unstable tracking performance and higher latency, degrad-
ing operator performance and data quality. Virtual Reality
(VR) or Extended Reality (XR) teleoperation [13]-[16] has
emerged as a promising alternative, utilizing commercially
available headsets to create intuitive control interfaces with
stereoscopic visual feedback that generalize across multiple
platforms. However, existing XR solutions remain difficult
to configure and often rely on individual Unity SDKs or
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WebXR platforms that introduce additional latency and com-
patibility challenges. Another significant limitation is the
lack of standardized data formats between XR devices and
robot controllers, necessitating substantial integration work
for new XR devices or robot platforms.

To address these limitations, we present XRoboToolkit—a
comprehensive suite of cross-device software development
kits and applications for real-time robot teleoperation via
XR devices. The toolkit provides a generalized interface
layer that resolves standardization challenges by adopting
OpenXR [17] conventions on the XR side and modular,
extensible Python and C++ interfaces on the robot side
for seamless integration across robotic platforms. Current
support includes devices such as PICO 4 Ultra and Meta
Quest 3.

A major contribution is the stereoscopic visual feedback
system, which integrates a low-latency communication pro-
tocol and a highly efficient video streaming pipeline, both
optimized to minimize latency and reduce motion sickness.

On the robot side, the system employs a quadratic pro-
gramming (QP)-based inverse kinematics solver (IK) that
generates smooth, reliable robot motion, particularly near
kinematic singularities, and incorporates dexterous hand
tracking for retargeting human hand motions to robotic hands
in fine-grained manipulation tasks. The modular architecture
of XRoboToolkit enables straightforward integration with
diverse robotic systems and simulation environments, tested
on platforms such as URS and ARX RS5 arms, the Galaxea
R1-Lite mobile manipulator, the Shadow dexterous hands,
with native support for MuJoCo [18].

Sec. [l details the architecture of the XRoboToolkit. Ex-
ample applications are presented in Sec. performance
evaluation in Sec. and conclusions in Sec. [V}

II. TELEOPERATION SYSTEM
A. Overview

Fig. |l| presents an overview of the XRoboToolkit ar-
chitecture. The XRoboToolkit-Unity-Client appli-
cation, deployed on XR headsets, captures pose track-
ing data and delivers a stereoscopic visual interface for
the human operator. This pose tracking data, including
head, hand, controller, full-body, and object tracking (via
motion trackers), is transmitted to the robot client via
XRoboToolkit-PC-Service in C++, the specific track-
ing data format is discussed in Sec. Additionally, the
package XRoboToolkit-PC-Service—-Pybind allows
direct access to the XR tracking data in Python with-
out handling the raw data structure. Stereo vision is en-
abled either through the onboard cameras of PICO head-
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Fig. 1. Overview of XRoboToolkit, an integrative framework bridging XR and robotics. Core functionalities include real-time teleoperation and stereoscopic
vision. Green blocks represent XR-side components, while blue blocks indicate components on the robot side.

Fig. 2. OpenXR conventions for pose tracking coordinate system [17].

sets or an external ZED Mini camera with the module
XRoboToolkit-Robot-Vision. The IK and dexterous
retargeting solvers are implemented in robot teleoperation
module XRoboToolkit-Teleop—-Sample—-Python to
provide support for both simulated environments, such as
Mujoco, and physical robot platforms, including the URS,
ARX RS5, and Galaxea R1-Lite. The XRoboToolkit’s mod-
ular architecture facilitates easy integration with additional
simulators and robotic platforms, providing a flexible and
extensible solution for stereoscopic teleoperation in virtual
and physical environments.

B. Data Streaming

XRoboToolkit-PC-Service employs an
asynchronous, callback-driven architecture for real-time
data streaming from VR hardware to client applications.
Communication is managed via a dedicated SDK handling
connection to the streaming service and data payload
reception.

XR Data Formats: Following OpenXR conventions, all
positional and rotational data use a right-handed coordinate
system with X-axis right, Y-axis up, and Z-axis backwards,
as shown in Fig. [2{a). The origin is established at the user’s
head position when the application launches. The 6 degree-
of-freedom (DOF) pose data are formatted as seven floating-
point numbers separated by commas: 3D position vector
[x,y, 2] followed by quaternion [qz, qy, ¢z, qw].

All real-time tracking data are transmitted within a single
JSON object at 90 Hz. This design simplifies client-side
parsing and ensures consistent data structure regardless of

enabled tracking features. Table [I] provides an overview of
main tracking data fields in XRoboToolkit.

TABLE I

XR TRACKING DATA FORMATS

Type Field Description
pose Headset pose
status Tracking confidence (0:
Head unreliable, 1: reliable)
handMode Input mode (0: None,
1: controller, 2: hand)
pose Controller pose
axisX, axisY Joystick position
axisClick Joystick press state
grip Grip input
Controller trigger Trigger input
primaryButton X Button (L), A Button
(R)
secondaryButton Y Button (L), B Button
(R)
menuButton Menu (L), Screen-
shot/Record (R)
isActive Tracking status (0: not
Hand active, 1: active)
scale Hand scale factor
HandJointLocations  Array of 26 hand joint
data entries
Whole-Body joints Array of 24 body joint
data entries
P Pose
Motion Tracker V2 Ve]ocilty & angular
velocity
wva Acceleration & angular
acceleration
sn Unique serial number

of tracker

Head Tracking:

Head tracking data contains headset

pose, status integer indicating tracking confidence, and hand
mode integer specifying active input mode.
Controller Tracking: Controller tracking captures both

left and right controllers’ poses with button and joystick
states. Joystick axes axisX and axisY provide floating-
point values from -1 to 1. grip and trigger inputs are
analog controls with values between 0 and 1 indicating
pressure intensity. Remaining buttons provide binary state
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Fig. 3. Conventions for (a) hand joints [17] and (b) body joints.

information.

Hand Gesture Tracking: Each hand gesture is repre-
sented through 26 joint poses: 4 joints on the thumb, 5
joints on each remaining finger, plus palm and wrist joints, as
illustrated in Fig. [3(a). Hand tracking data includes tracking
quality, scale factor, and an array of 26 joint data entries
per hand. Each entry contains 6-DOF pose with additional
metadata including tracking status and joint radius. While
transmitted with the JSON object at 90 Hz, hand tracking
data updates at 60 Hz due to camera limitations.

Whole-Body Motion Capture: Whole-body joint track-
ing consists of 24 joint data entries corresponding to major
human model joints, as shown in Fig. [3(b). Each entry
contains joint pose, velocity, and acceleration. The 24-joint
model follows PICO’s standard, as OpenXR currently lacks
a standardized whole-body model.

Motion Tracker: For PICO 4 Ultra headsets, we support
object tracking mode for auxiliary motion trackers. Motion
tracker data captures pose, velocity, and acceleration mea-
surements with serial numbers for tracker identification.

C. Robot Control

The robot control module maps XR tracking state to robot
commands through distinct control modes: IK for manipu-
lator control, dexterous hand retargeting, head tracking, and
mobile base control.

1) Inverse Kinematics: For manipulator control, we im-
plement a QP-based IK solver using PlaCo [19], built on the
Pinocchio rigid body dynamics library [20]. The QP problem
is defined as:

N
m&nZWiHJi(Q)Q‘i‘ei(Q)Hz (D
i=1

where q represents manipulator configuration; each task
i is defined as residual function e;(q) with weight w;;
Ji(q) denotes task Jacobian; and C(q) represents additional
constraint matrix.

The optimization-based IK approach enables easy inclu-
sion of constraints and regularization terms. To improve
robot stability near singularities, a regularization term max-
imizes manipulability [21]:

m = /det(J(q)J(q)T) 2)

When using VR controllers, end-effector tracking activates
when the user holds the grip button. For stable, intuitive

experience, the system uses relative motion: the robot’s end-
effector tracks controller displacement relative to its state
when grip was first pressed.

Auxiliary motion trackers can be attached to the user’s
body (e.g., elbow) to introduce additional pose constraints
into the QP-based IK. This enables nuanced control over
robot full-body posture by mapping operator positions to
equivalent robot links, particularly useful for resolving null-
space redundancies and achieving anthropomorphic motions.

2) Dexterous Hand Retargeting: For dexterous manipula-
tion tasks, keypoint positions from the OpenXR hand model
(Fig. a)) are obtained via the XR headset’s hand tracking.
These keypoints are mapped to robot hand joint space via:

N

min Y [lovi = fi(a)l* + Blac - aal?, G
=1

s.t. i < < qu,

where q; is robot hand joint configuration at time ¢, v’
is the ¢-th keypoint position in the human hand model,
fi(q:) computes corresponding robot hand position, « is
a scaling factor for different hand sizes, and 3 is regu-
larization weight for smooth motion. Implementation uses
dex_retargeting [12].

3) Mobile Base Control: For mobile manipulators with
omnidirectional platforms, the mobile base is controlled by
XR controller joysticks. The left joystick’s X and Y axes
issue linear velocity commands in the robot’s sagittal and
coronal planes, while the right joystick’s X-axis controls
angular velocity, providing intuitive mobility interface during
manipulation tasks.

D. XR Unity Application

Fig. [ presents the application interface for
XRoboToolkit-Unity—-Client, which contains
five panels: Network, Tracking, Remote Vision, Data
Collection, and Log.

The Network panel displays essential headset status in-
formation, including serial number (SN), IP address, frame
rate, connection status with the PC service, and configured
service IP. The Tracking panel organizes controls into four
functional groups. The Source group allows users to select
pose data types for tracking (e.g., head, controller, hand).
The PICO Motion Tracker group configures tracking
modes: None, Full-Body, or Object. Note that for Meta
Quest, object tracking is unavailable since the auxiliary
motion tracker is not supported. The Data & Control
group provides toggles for pose data transmission to the PC
service. The Status group provides live tracking status.
The Remote Vision panel handles the stereoscopic vision
state. The State field displays current video stream status.
The XR application currently supports PICO 4 Ultra and
ZED Mini cameras as streaming sources, with extensibility
for additional camera sources through modifications of a
YAML configuration file. The Data Collection panel en-
ables recording of both pose and visual data streams, with
automatic local storage and timestamp-based indexing for
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Fig. 4. Screenshot of the PICO version of the XR Unity Application.

future reference. The Log panel provides real-time system
diagnostics and monitoring information for debugging pur-
poses.

E. Stereoscopic Visual Feedback

Our toolkit currently supports two stereo video sources:
the PICO 4 Ultra headset and the ZED Mini camera. The
PICO 4 Ultra operates as a standalone solution, whereas
the ZED Mini requires connection to an external computing
platform—such as a Windows or Linux PC, or an NVIDIA
Orin device—to enable video streaming. When using the
PICO 4 Ultra, operators benefit from a homogeneous visual
experience, as both display and capture are provided through
the same hardware platform.

To achieve stereoscopic vision, we implemented a custom
shader that adjusts the interpupillary distance and sets the
focal point at approximately 3.3 feet. This configuration
provides enhanced three-dimensional depth perception, a
distance considered optimal for teleoperation tasks, although
it comes at the cost of sacrificing far-distance depth accuracy.

Our empirical observations indicate that the PICO 4 Ultra
delivers superior visual quality compared to the ZED Mini,
particularly in terms of tone reproduction, brightness, color
accuracy, and dynamic range. Additionally, the PICO 4
Ultra offers a more balanced field of view (FOV), with
horizontal and vertical angles of approximately 76.35° and
61.05°, respectively, compared with the 82° horizontal and
52° vertical FOV of the ZED Mini.

III. APPLICATIONS AND DEMONSTRATIONS

Fig. [5]demonstrates the versatility of XRoboToolkit across
diverse robotic platforms and simulation environments. The
framework’s modular architecture enables seamless integra-
tion with both hardware systems and virtual environments,
supporting a wide range of teleoperation scenarios from
precise manipulation to mobile robotics and dexterous hand
control. Please refer to the supplementary Vide(ﬂ for more
information.

Video link: https://youtu.be/g6QJX2s—RCo

A. XR Controller-Based Teleoperation

XRoboToolkit supports intuitive teleoperation using XR
controllers for both dual-arm manipulation systems and
mobile manipulators. The operator wears an XR headset
and uses handheld controllers to directly control robot end-
effectors through the inverse kinematics solver described in
Sec. [I=C1l Note that the XR headset can be worn around
the neck when stereoscopic visual feedback is not required.
This configuration reduces head-mounted weight and fatigue
while maintaining full controller tracking functionality, mak-
ing it particularly suitable for tasks where operators can rely
on direct visual observation of the robot workspace.

As shown in Fig. [5(a), the controller-based teleopera-
tion has been validated on multiple platforms, including
dual ARX R5 manipulators for long-horizon tasks such as
bimanual carpet folding, and the Galaxea R1-Lite mobile
manipulator for transportation and placement tasks. The
system has also been used in the applications discussed in

Sec. HI-BHII-C]

B. Precision Manipulation with Active Stereo Vision

Fig. [B|b) illustrates our dual URS5 setup equipped with
a 2-DOF active head and stereo vision feedback. This
configuration demonstrates the framework’s capability for
high-precision manipulation tasks. The active head tracking
system employs a 2-DOF gimbal that provides yaw and
pitch rotation following the operator’s head movements in
real-time. The roll DOF is intentionally omitted to prevent
motion sickness caused by inconsistency between visual and
vestibular senses [22]. For stereoscopic visual feedback, a
PICO 4 Ultra headset is mounted on the active head to
serve as the stereo camera system that provides 2160x810
resolution stereo video streaming at 60 Hz.

The system is validated on high-precision insertion tasks,
specifically inserting a screwdriver with a 3mm diameter into
a circular hole with a 4mm diameter, requiring precise spatial
perception and fine motor control with only 0.5mm tolerance
on each side.

C. Motion Tracker for Redundant Manipulator Control

For redundant manipulators, auxiliary motion trackers
can be integrated to provide additional control. Fig. [B{c)
demonstrates the motion tracker teleoperation with a Unitree
G1 upper body visualized in MeshCat. The motion trackers
are attached to the operator’s elbows to provide position-
only tracking that serves as additional inverse kinematics
constraints for 7-DOF arms. This elbow tracking enables
intuitive control of redundant arms by resolving kinematic
redundancies in an anthropomorphic manner, allowing op-
erators to achieve more natural arm configurations while
maintaining end-effector tracking from the controllers.

D. Dexterous Hand Control in MuJoCo

Fig. [B|d) showcases the hand pose tracking task within
a MuJoCo simulation. In contrast to demonstrations that
rely on XR controllers, this configuration utilizes the hand
tracking mode of the headset to directly capture finger and
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Example applications of XRoboToolkit: (a) teleoperation with XR controllers for dual arm manipulation and mobile manipulators, (b) Dual URS

manipulators with 2-DOF head tracking and stereo vision, (c) auxiliary motion trackers for robot elbow control in MeshCat visualization, and (d) dexterous

hand tracking in Mujoco simulation.

hand gestures. The implementation employs the dexterous
hand retargeting approach described in Sec. [[I-C.2} mapping
the 26-joint OpenXR hand model to the Shadow Hand’s
kinematic structure. The hand pose tracking task demon-
strates XRoboToolkit’s capability to support dexterous ma-
nipulation, enabling operators to perform fine manipulation
tasks through direct hand gesture control without requiring
additional hardware beyond the XR headset.

IV. EXPERIMENTS
A. Video Streaming Latency Comparison

A low-latency video streaming solution was developed
and comparatively evaluated against Open-TeleVision [14].
To capture both virtual and real-world perspectives simul-
taneously, a Kandao QooCam EGO 3D Camera was used
for dual-view recording. Latency measurements utilized a
Precise Timing Measurement LED Panel cycling at 100
Hz. For each measurement, the illuminated LED sequence
was identified, with the timestamp taken at the sequence
midpoint. Latency was defined as the temporal offset be-
tween the VR display and the corresponding real-world LED
panel view. Video footage was captured using OBS Studio,
sampling 10 frames per condition to compute mean and
standard deviation. Fig. [f]illustrates the measurement method
and system setup.

Three conditions were evaluated: 1) Open-TeleVision, 2)
ZED Mini to PICO 4 Ultra, and 3) PICO 4 Ultra to PICO
4 Ultra. For conditions 1 and 2, the ZED Mini connected
to a Windows 11 laptop (Intel i9-13900HK, 32 GB RAM,
NVIDIA RTX 4080) using ZED SDK 4.0.8. Condition 3
used no PC; video streamed directly from the PICO 4 Ultra
headset. All devices are connected to the same local network.
The video transmission parameters are 1280x720 resolution,
60 FPS, and 1 Mbps bitrate, matching Open-TeleVision’s
default configuration.

Results are summarized in Table [l XRoboToolkit (ZED
Mini — PICO 4 Ultra) achieved the lowest mean latency
(82.00 ms), substantially outperforming Open-TeleVision

[

Fig. 6. Video streaming latency measurement method.

TABLE I
VIDEO STREAMING LATENCY COMPARISON

Approach XRoboToolkit

(Hardware)

Open-TeleVision XRoboToolkit
(ZED Mini - Quest 3)  (ZED Mini - PICO 4 Ultra)  (PICO 4 Ultra - PICO 4 Ultra)

121.50 82.00 100.50
6.01 6.32 3.12

Mean (ms)
STD (ms)

(121.50 ms) and XRoboToolkit (PICO 4 Ultra — PICO
4 Ultra) at 100.50 ms. The ZED Mini — PICO 4 Ultra
configuration benefits from external laptop processing, which
is more computationally powerful than the standalone PICO
4 Ultra headset, likely contributing to superior latency per-
formance. The PICO 4 Ultra — PICO 4 Ultra configuration
showed the lowest variability (STD = 3.12 ms), indicating
more consistent performance, while ZED Mini — PICO 4
Ultra and Open-TeleVision setups showed higher fluctuations
(6.32 ms and 6.01 ms, respectively).

B. Data Collection for VLA Fine-tuning

To validate that the teleoperation and data collection
pipeline provided by XRoboToolkit can generate high-quality



demonstration data suitable for VLA training, we collected
100 demonstrations of a bimanual carpet folding task using
the ARX RS dual-arm system equipped with RealSense
DA405i1 wrist cameras and a D435i overhead camera. The
task sequence involves first folding the carpet in half along
the short edge, then folding it again along the long edge,
and finally pulling the carpet aside with the right arm. Each
demonstration was recorded at 50 FPS, with every frame
containing 14-dimensional robot joint states, 14-dimensional
position control commands, and 424x240 RGB images from
all three cameras. The average task completion time for each
teleoperation demonstration was 20 seconds, with occasional
regrasping and repositioning behaviors.

The dataset was used for Low-Rank Adaptation fine-tuning
on the my model [3]. Training was conducted for 80,000
steps with a batch size of 16 and an action horizon of 50
frames. The resulting policy achieved a 100% success rate
during 30 minutes of continuous operation with an average
task completion time of 30 seconds. Importantly, the pol-
icy demonstrated adaptive behaviors including autonomous
regrasping when grippers failed to secure the carpet and
intelligent repositioning when the carpet was off-center.

V. CONCLUSIONS

This paper presents XRoboToolkit, a cross-platform
framework for XR-based robot teleoperation that addresses
key limitations in existing systems through low-latency
stereoscopic feedback, optimization-based control, and mod-
ular architecture. The framework demonstrates versatility
across diverse robotic platforms and validates its effective-
ness through precision manipulation tasks and VLA model
training. While XRoboToolkit provides significant advances
in accessibility and scalability, certain limitations remain.
Current whole-body tracking relies on PICO’s 24-joint model
due to the absence of standardized whole-body definitions in
OpenXR, potentially creating compatibility issues with other
XR brands using different skeletal models. Furthermore,
while whole-body tracking data is provided, it has not
been validated through retargeting to humanoid robots for
whole-body teleoperation. Additionally, the hand retargeting
framework assumes each joint is individually controllable,
and therefore cannot accurately retarget to robot hands with
mechanical constraints that couple joint movements, such as
the INSIPRE Hands. The framework currently supports only
MuJoCo simulation, limiting its applicability across diverse
simulation environments.

Future work will focus on improving hand retargeting
algorithms for underactuated systems, expanding simulation
support through platforms such as Roboverse [23] to en-
able multi-simulator compatibility, and developing humanoid
teleoperation capabilities with validated whole-body mo-
tion retargeting [24]. Additionally, we will contribute to
OpenXR standardization efforts to enable more consistent
cross-platform compatibility.
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